行业资讯

NEWS

射频信号链的原位非线性校准

时间:2023-10-20    浏览:1763
基础设施通信系统、仪器仪表和防空应用的进步推动了对RF和混合信号IC的更高性能要求,特别是高速/高动态范围数据转换器[1-3]。

然而,在信号链中的IC之间插入的印刷电路板(PCB)和封装会引入寄生效应,并遭受制造缺陷的影响,从而导致网络中的电路不平衡并损害GHz信号的线性度。

模数转换器(ADC)的采样保持放大器(THA)前面通常有一个片内缓冲器,以简化与片外驱动放大器(或可变增益放大器)的耦合。片上缓冲能力有限,耗电大,并且在高频时会减弱。IC之间的相互加载引入了额外的非线性或改变IC最佳工作条件。

接收(Rx)信号链如图1所示。每个功能模块(混频器、驱动放大器、滤波器和ADC;后者包括前端缓冲器和THA)是同一PCB上的独立IC。虽然每个模块都可以单独(或在实验室的最佳定制板上)发挥最佳性能,但一旦耦合并受到杂散和实际PCB的限制,整个链的净性能可能会受到限制。



射频信号链的原位非线性校准
数字。1. 经典“接收”(Rx)信号链示例。



IC设计人员努力加强芯片接口的电路,以满足在各种负载条件下所需的性能。通常,使用这些组件的系统设计人员需要定制和迭代设计,以最大程度地减少上述损伤的影响。IC高级模型(通常是简单的电子表格)的局限性和电路板杂散建模不足加剧了这种努力。原型设计工作可能会为高性能系统的开发增加几个月的时间,并且需要IC供应商的应用工程人员的参与[4,5]。

这里介绍的非线性校准(NLC)方法通过在宽输入频率范围内校正动态非线性失真来缓解这些问题。RF/混合信号IC整个信号链的非线性模型的参数是原位确定的,即在系统板上确定。然后推导一个数字逆校正函数,使二阶和三阶失真为零。这是在信号链处理信号之前在前台执行的。然后,逆函数实时应用于ADC输出端的数据流,从而对损伤的影响进行后失真(线性化)。这让人想起数字预失真(DPD)或通信系统中的回声/传输消除[6]。

本文的组织结构如下。第二部分讨论校准系统及其操作。第三部分介绍了非线性、模型参数识别和二次和三次谐波失真的消除所采用的模型。最后,第四部分报告了实验结果,量化了所提出的校准的有效性。